
Deep learning emulation and compression 
of an atmospheric chemical system using 
a chained training regime
Motivation
Modeling atmospheric chemistry is vital to major environmental problems 
including air pollution and climate change. These models are 
computationally expensive, largely because of the high cost of solving 
systems of coupled differential equations. Previous studies have shown that 
machine-learned chemical mechanisms can be orders-of-magnitude less 
computationally expensive than traditional methods but tend to suffer from 
exponential error accumulation over longer simulations [1, 2]. Here, we 
present a modeling framework that reduces error accumulation 
compared to previous work while maintaining computational efficiency.

Results

Conclusions and Future Work
- The recurrent training regime results in extended simulations               

without exponential error accumulation.

- The neural network can reversibly compress the number chemical 

species by >90%, leading to a smaller memory footprint.

- We observe a ~260× reduction in computation time compared to the 

reference mechanism (~1900× on a GPU).

- For O3, our model predictions match those of CBM-Z/MOSAIC with ~ 6% 

mean error across 99% of all randomly initialized simulations. The top 
1% of simulation error can be significantly higher, but these results are 
qualitatively similar to the reference model. 


- We show that these models may be extended to a week without 
exponential error. 


- Future work: reduce top 1% simulation error, characterize embedding 
groupings, and take steps to implement this framework into a chemical 
transport model. 
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Methods
- We create an encoder-operator-decoder neural network (Fig. 1) to emulate 

the CBM-Z/MOSAIC mechanism. Error function prioritizes ozone (O3).

- I/O: CBM-Z/MOSAIC predictions of changes in concentrations of 101 

gas- and aerosol-phase chemical species over 24h, given a range of 
pseudo-randomized chemical and meteorological initial conditions.

Fig 6. Time required for one million independent simulations.
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Fig. 1. Encoder-operator-decoder residual neural network architecture
- Models trained on 24h may be extended to 1 

week (168h) without exponential error, and 
similarly with a 1 week trained model may be 
extended to 1 month (720h) (Fig. 5)

- 260x speedup with neural network; 1900x 
with GPU (Fig. 6)

Fig 2. O3 sample performance over 24h for 
10 simulations (left), with absolute error 
(right) metrics for one million simulations for 
a neural network trained on single steps (top) 
and on a chained training regime (bottom).

Fig 5. O3 sample performance over the course of 1-week (168h) (a) and 
1-month (using 1 week model, 720 hours) (b) for 10 simulations (left), 
with absolute error (right). All simulations have random initial 
conditions. Percent in the right panels represent the error percentile for 
the entire testing dataset.

Fig 3. Example time evolution of O3 and other 
dominant species in CBM-Z/MOSAIC (black) 
compared to the neural network (red). H2O2 and 
VOC species (CO, HCHO, OLET, ISOP) help control 
O3 formation in the CBM-Z/MOSAIC model.

Fig 4. Test set (10,000 simulations) O3 RMSE 
as a function of encoded compression for a 
series of training and testing data. The 
compression ratio (x-axis) is defined as the 
given number of compressed species 
divided by the total 101 species. Centers of 
the bars represent the median RMSE for 6 
neural network models and the extent of the 
vertical bars represent the bounds of the 
95% confidence interval. For (a) , a 
compression greater than 32 species incurs 
statistically significantly higher error.
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- Recurrent training regime curtails exponential error amplification 
compared to single-step training (Fig. 2).

- For O3 with training dataset concentrations ranging from 0–500 
ppb, neural network predictions differ from CBM-Z/MOSAIC 
predictions over 24h by <8.2 ppb in 90% of all simulations 
(mean rel. error: 5.5%), 27 ppb in 99% of all simulations (mean 
rel. error: 6.2%). However, the top 1% of simulations predictions 
differs by up to 133 ppb (mean rel. error: 16.8%) (Fig. 2, 3)

- The encoder can faithfully compress 101 species into 4 features 
when noise is added during training (Fig. 4)


