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- The neural network can reversibly compress the number chemical
species by >90%, leading to a smaller memory footprint.

- We observe a ~260x reduction in computation time compared to the
reference mechanism (~1900x on a GPU).

- For O3, our model predictions match those of CBM-Z/MOSAIC with ~ 6%
mean error across 99% of all randomly initialized simulations. The top
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Fig 5. O3 sample performance over the course of 1-week (168h) (a) and

1-month (using 1 week model, 720 hours) (b) for 10 simulations (left), Fig 6. Time required for one million independent simulations.

exponential error.

- Future work: reduce top 1% simulation error, characterize embedding with absolute error (right). All simulations have random initial References: [1] Kelp, et . (2016), arXiv: 1808.03674., [2] Keller and Bvans (2019). Geasai: Mods/ Dev., 12(8), 12091225,
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